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1. Introduction

The way the energy of gliding aircraft is used may contribute
to an increase in their effectiveness, and in some cases, i.e. a flight of an aircraft
with engine failure, directly relates to the probability of its survival. Many of the
traditional methods for control of unpowered flight are empirically derived, which
makes them suitable in a limited range of initial conditions. The total energy of an
aircraft would be effectively used only through implementation of optimal control
strategies or their close approximations.

Methods for trajectory optimization are under constant development. A re-
cent example is the attempt for direct trajectory optimization via representation
of the dynamical system in differential inclusion format [1]. Nevertheless, most
successful solutions of the problem are reached through numerical implementa-
tion of the Pontryagin’s minimum principle. Unfortunately, many of the solutions
are based on strong assumptions of trajectory segments in the vertical flight path
[2,3], fixed flight time [1,2] and quite arbitrary definition of boundary conditions
[2,3].

In the current paper, the optimal control problem is solved via Pontryagin’s
minimum principle. The flight time is not fixed. The boundary conditions have
physical meaning. The problem of optimal control of unpowered flight is solved
according to three criteria:

* Maximum flight range;

* Maximum kinetic energy at the point of impact with the Earth surface;

* Optimal conditions for surface penetration in the point of impact.

A penalty function approach Is used to account for end-state constraints, The
two-point boundary value problem is solved numerically. The same procedure is
used for the three criteria. The differences are in the formulae for the end values of
the costate variables.

! "This paper was included in the Programime of the Third Evropean Control Conference, September 1995,
Rome, Italy.
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The optimal control of the unpowered flight guarantees effective use of the
potential and kinetic energy of the aircraft. Its implementation would substan-
tially increase the flight range, the aircraft energy at the point of impact, and the
penetration characteristics. Furthermore, it would provide opportunities to com-
pensate for model parameter changes and perturbations.

2. Problem formulation
2.1. Equations of motion

The equations of motion relative to an Earth-fixed coordi-
nate system were described using a rigid-body dynamical model in absence of wind.
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Here m denotes the aircraft mass, and g — the gravitational acceleration. The state
variables are speed v, vertical flight path angle % horizontal flight distance x, and
altitude 4. The aircraft drag D and lift L are described by the equations
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where S is the wing area, p is the air density, and the parameters ¢, and ¢, depend
on the Mah number M. In the particular model the aerodynamics parameters are
defined by the equations
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where « is the aircraft angle of attack. Denoting Py, 88 alr density at sea level,
Hih)= pip,, as relative density, and i =p,,5/(2m), eqs. (1) take the form
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The functions Hfh) and M(v,k) are described in detail in f4].
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2.2. Optimization problem

‘The optimal control problem is stated in Mayer form and
requires minimization of the criterion

(5) J =8 D) ¢]

for differential constraints on the state vector y(s) = [¥(8), YO, x(8), A(£}] in the
form

(6) . y:f(ysa&t)’ y(ro):yﬁ
described by egs. [4], constrains on the end state
Q) Ply{t). &1 =0,

and saturation-type constraints on the control function ¢

® et <o ..
The duration of the flight t, is not fixed.

The solution for three different criteria is examined:
a. Maximum flight range

9a) J=x @)
b. Maximum kinetic energy at the point of impact with the Earth surface
(9b) J=-05v2()

c. Optimal conditions for surface penetration in the point of impact [5]

{9¢) J=- v(tf) sin e

The constraints on the end state for the three cases are as follows:
(10a} k(zf) = {),
(105, ¢) h(tf) =0 x (tf) -X =0,

where X is the initial horizontal distance to the reguired point of impact with the
Earth surface,

The problem is solved via Pontryagin’s minimum principle. The second con-
straint in egs. (10b,¢) is accounted for by a penalty function in criteria (98}, (9¢):

(118) J=-05v%@)+05s, [x(t,) - XP,

(11l¢) J=-v{)siny@)+ 055, [x(1,) - X1
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The first constraint in eqs. [10] is accounted for by a Lagrange multiplier vy, which
leads to a unconditional minimization of

(12) M) =T 41+ vh @)

The Hamiltonian for the optimal control problem is defined by the equations

13) H{y.o,A,0)=A" f,
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The Lagrange multiplier and the flight time are determined from eqs. (7) and the
condition [6]

aJDGnJﬂ+8PWﬂngJ
dt, dt,

Egs (14) for the costate variables have the form
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where the dependence of the derivatives dM/dy, dM, {dh, and dH/dh on the phase state
is derived analytically from the relations in [4]. The end values of the costate vari-
ables are defined from eqgs.(7), (16), and for the particular criteria are as follows:

)"v(rf) =0,

ly(rf)=0,

(184} Altp) =1,
1

wltp) ==
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A, G )=v(,),

A (t,)=0,
(185) At )= [x(z,) = X],
_ ;(rf)—sb [x(2,)— X]cosy(t,)
AR~ sin (1) ’

Z,v(tf ) =—siny(t,),
Ay (tp)==v(ty)cosy(t,),
(18¢) A(tp)=—sc[x(t;)-X],

(ff) '}’(ff)‘f'sc[x(ff)*x]_
v{ f) tg')’(ff)

2.3. Numerical solufion

;Lh(f)—'

The two-point boundary value problem {7}, {17), (18} is solved
numerically. Egs {4) are integrated using the 4th order Runge — Kutta method until
the first condition in (10) is fulfilled. Then, using eqs.{18) the end values of the
costate variables are defined and eqs.(17) are integrated backwards until = 7, The
consequent approximation for the control function is

(19) a"’“(r)=a”(z)+k“’(r)d7Hr,

limited by the maximum allowed angle of attack o in eq.(8). For the gradient of
the Hamiltonian an analytical form exists

dH
20 = T Ny Np s NaN N N
20 PP pefHR W [-2v7 A ] a™ (H+A )]

The initial approximation o(f} for the first criterion is derived from the condi-
tion of maximum lift-to-drag ration on the trajectory, and for the particular model is

(21a) a’(t)=AJepa (M) /et

For the other two criferia the initial approximation was computed according
to the formula

(21b,¢) Cxo(f)=k1{x*+k2[’y+tg—1 i ]
A=

and the limitation on the angle of attack (8). The parameters k & and k, are
explicitly deﬁned in {8]. Here in parentheses is the direct pursuit. control param-
eter, and &" is determined from the condition for a straight flight
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The choice of k& ¥ (£} in (19) allows for incorporation of different optimization

techniques and is a subject of a separate study. Effective numerical algorithms for the
solution of the two boundary value problem in flight dynamics are studied in [7, 8],

3. Results and discussion
Figure 1 shows the initial approximation, the optimal control function, and the

state variables on the optimal trajectory for the maximum range criterion. For v,=450
my/s, g,=30°, x,=0, and £#,=10000 m the increase in the flight range is 42 percent.
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The relevant variables for the maximum kinetic energy criterion are pre-
sented in fig. 2. For v=150 m/s, 3,=10°, x,=0, £,=1000 m and X=3000 m the energy
at the point of impact with the Farth surface is increased with 40 percent. For the
same initial condition and X=5500 m the use of traditional control methods does
not guarantee arrival at the required point of impact, while the optimal control
does. If X=5900 m the required point of impact ¢annot be reached even: with
implementation of the optimal ¢ontrel function. The solution in such cases coin-
cides with the optimal control for the maximum range criterion without, however;
satisfying the second terminal constraintin (10b). -
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Fig2. Optimal coutrol and trajectory for the maximum kinetic energy at the point of impact cntcnoy
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Figure 3 shows the initial approximation, the optimal control function, and
the optimal trajectory variables minimizing criterion (11¢). For initial conditions
v,=150 m/s, 7,=10°, x,=0, £, =1000 m and X=3000 m the implementation of the
optimal control would incréase the depth of penetration with 117 percent. Fur-
thermore, if the direct pursuit guidance is applied, the aireraft would meet the
Earth surface at an angle of 20 degrees, which would result a significant probability
for a ricochet,
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Fig3. Control function and trajectory varizbles for optimal conditions for penetration at the point of impact with the Earth surface
initial approximation, optimal variables
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The implementation of the optimal control would increase not only the air-
crafi effectiveness, but also the opportunities for compensation for model param-
eter changes and other perturbations.

In conclusion, the optimal control problem of unpowered flight in vertical
plane was solved via Pontryagin’s minimum principle for a class of terminal crite-
ria and constraints. The implementation of such control would increase the air-
craft effectiveness, and in some cases, i.e., a flight of an aircraft after its engines
have failed, may guarantee safe landing and survival of crew and passengers.
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OnruManHo yiupasjesue Ha 0e3nBUraTelIeH
IOJIET BEB BEPTHKAJIHA paBHUHA

Todop Taeapes
(Peswme}

Ha4uabsr Ha H3N0N3BAHE HAa CHEPrHATA HE IJIAHUPALI
JeTaTEeNeH aNAPAT MOXE I3 HONpHIece 3a IOBMIIABAHETO HA HETOBaTA
e(BeKTHBHOCT, &@ B HAKOM CJIYYau TIPAKS ORpefelNs BEPCATHOCTTA 34 Ole/ABaHeT
My. B HacrosmaTa cTaTHA 3ajavaTa 3a COTHMA4JNHO ynpaslieHHE Ha [IOJeTa ¢¢
pelliaBa B CLOTBETCTBHE ¢ TPHM KPUTEPHA: MAKCHMalHa JajcYdMHA Ha MOJETa;
MAKCHMAJIHZ KHHETH4EHA EHEPIrHA B TOYKATa Ha CHIPHKOCHOBCHHE ChC 3CMHaTa
IOBBEPXHOCT; ONTHMANHH YCIOBHA 38 NPOHMKBAHE B 38MHATA NOBBLPXHOCT.
3anauaTa 3a ONTHMANHO YIpaBAeHHE Ce peillaBa HAa OCHOBAaTa HAa NPHHIHIA HA
makcumyMa Ha ITourparuy, OrpaHudeHHsITa HA XPAHHOTO CHCTOAHUE €€ OTYHTAT
ype3 BBBEXIAHE HA HaKazaTenHa QyHKIHA B KpUTepud. BpemeTo na nonera He e
dukcMpano. JABYTOYKOBATA KDacsa 3ajada € pelleHa HHCAeHO. OnTUMAalHOTO
yilpaBJIeHHE¢ Ha NJaHUpallusd MQJleT rapaHTupa ¢QeKTHBHO HINON3IBAHE Ha
KHHETHYHATZ ¥ NMOTCHIHMANHATE SHEPI'HMA Ha JICTATCIHHA anapar. Pea.lmsaunﬂ'ra
My MOMBIHUTENHO TO3BONSBA KOMIICHCHpDaHE Ha NPCMEHH B HapaMeTpHTE Ha
MOMEJa 1 HEOTHETeHH BHHIIHH CMYIIEHHS.





