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l. Introduction

The way the energy of gliding airqaft is used may contribute
to an increase in their effectiveness, and in some cases, i.e. a flight of an aircraft
with engine failure, directly relates to the probability of its survival. Many of the
traditional methods for control of unpowered flight are empirically derived, which
makes them suitable in a limited range of initial conditions. The total energy of an
aircraft would be effectively used only through implementation of optimal control
strategies or their close approximations.

Methods for trajectory optimization are under constant development. A re-
cent example is the attempt for direct trajectory optimization via representation
of the dynamical system in differential inclusion format [1]. Nevertheless, most
successful solutions of the problem are reached through numerical implementa-
tion of the Pontryagin's minimum principle. Unfortunately, many of the solutions
are based on strong assumptions of trajectory segments in the vertical flight path
[2,3], lxed flight time [1,2] and quite arbitrary definition of boundary conditions
12,31.

In the current paper, the optimal control problem is solved via Pontryagin's
minimum principle. The flight time is not frxed. The boundary conditions have
physical meaning. The problem of optimal control of unpowered flight is solved
according to three criteria:

. Maximum flight range;

. Maximum kinetic energy at the point of impact with the Earth surface;.

. Optimal conditions for surface penetration in the point of impact.
A penalty function approach ig used to account for end-state constraints. T'he

two-point boundary value problem is solved numerically. The same procedure is
used for the three criteria. The differences are in the formulae for the end values of
the costate variables.

' This paper was included in the Programme of the Third European Control Conference, September 1995,

Rome, Italy.
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The optimal use of the

potential and kin d substan-
tially increase the ct, and the
penetration chara es to com_
pensate for model parameter changes and perturbations.

2. Problem formulation

2.1. Equations of motion

The equations of motion relative to an Earth-fixed coordi-
nate system were described using a rigid-body dynamical model in absence of wind.
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v=___gsrnT,
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' L gcosy
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x=v cosy,

h=v sinT

v = -c, ltH (h)v' - gsin y ,

y = rrltH(h\v - ScosT 
,

.,
x=v cosy,

h =v sinT
The functions H(h) and, M(v,h) are described in detail in [4].

Here m denotes the aircraft m The state
variables-are-speed v,vertical cex, and
altitude h.The aircraft dragD

where { r-r -thr wing area, p is the air density, and the parameters c^ and c, depend
on the Mah number M.ri the particular model the airodynamicJparam'etd;;;
defined by the equations

(3) cD = cDo(M) + cf'a" '

ct=cla2'
where a is the aircraft angle of attack. Denoting p*o as air density at sea level,
H(h): plp*oas relative density, and p:p*Slem),.qr.(l) take the form

(4)
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2. 2. Optimization problem

The optimal control problem is stated in Mayer form and
requires minimization of the criterion

(5) t=llst(t,),t)

for differential constraints on the state vector f(t) : lv(t), y(t), x(t), h(t)l in the
form

(6) y=f(y,d,t), y(t)=yo

described by eqs. [4], constrains on the end state

(7) p Iy U), tl = 0,

and saturation-type constraints on the control function o

(8) la@l<a,.

The duration of the flight t, is not fixed.

The solution for three different criteria is examined:
a. Maximum flight range

(9a) t:x(tr);
b. Maximum kinetic energy at the point of impact with the Earth surface

(9b) J:-0.5v2(tr);

c. optimal conditions for surface penetration in the point of impact [5]

(9c) J:-v(t,)sin{r,).
The constraints on the end state f<ir the three cases are as follows:

(r0a) h(tr) : 0,

(rDb, c) h(t) :0, x (tr) - X :0,
where X is the initial horizontal distance to the required point of impact with the
Earth surface.

. 
The problem is solved via Pontryagin's minimum principle, The second con-

straint in eqs. (10b,c) is accounted for by a penalty funition in criteria (9b), (9c):

(110) J: - 0.5v'(tr) * 0.5su 1x(tr) _ X',
(11c) J: -v (1) sin y(t) + 0.5 s"lx(t,) _ 42.
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The first constraint in eqs. [.10] is account-ed for by aLagrange multiplier r4, which
leads to a unconditional minimization of

(rz) [(t): rVQ),trl+rtrh(tr).
The Hamiltonian for the optimal control problem is defined by the equations

(13) H(y,a,),,t)=L' f ,

(14) i --a H
'v- 0 y'

(15) i (r,)=- 4 n(tr )-\-r/ 
0 y(t)'

The Lagrange multiplier and the flight time are determined from eqs. (7) and thecondition [6]

(16) )Jlvftr),trl ,aPr[yTr),tr]H(tr).--E=.-ffv=0.
Eqs.(14) for the costate variables have the form

i, = ).,t, H @( +{ r' *2, or)- t",( u r rrrr,* t "?" J''\dM dv tl'- ' vz )
-1,cosy- h osiny,

i -1 n g

(r7) . o,=h'gcosy-Lresiny 
+l,vsiny-hnvcosy'

' L r=0,

i o=). ,,r, ,,(di:y4Y H(h\ *r^4\- r, dH
\dM dh -dh) r4vcr'*'

, where. the dependence of the derivatives dll I dl, dM I dh, and, dHl dh on the phase state
is derived -analytically from the relations iri 1+1. rde rnA uut,r6s of the .6J;i; ;i-
ables are delined tiom eqs.(7), (16), and for the particular criteria are as follows:

),,(ty) =0,

Lr(ty) =0,
(18a) L*(ty) =I,

1

hnGr)=- --;-- r tgTG r)
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(1 8r)

L 
"(t rl=v(t ),

L r(t r)=0,
L*(tr)=-sa [x(tr)- Xl,

) /+ \_ lG)-sulx(t,)-Xlcosy(tr).
/v 1r\t y )=- ,in Tq) 

,

).r(ty) = -siny(//),
J"r(t y) = - v(t f) cosT(ry ),

1, *(t f) = - s 

"lx(t 
y) - X),

h,(t,t='(//) *Y(t r)+ s'[x(t t) - x] 
.-n'-I/ vU)' tgy(t) '

2. 3. Numerical solution

The two-point boundary value problem (7), (17), (1 8) is solved
numerically. Eqs.(4) are integrated using the 4th order Runge - Kutta method until
the first condition in (10) is fulfilled. Then, using eqs.(18) the end values of ttre
costate variables are defined and eqs.(l7) are integrated backwards until t : t".The
consequent approximation for the control function is

(19) a**'(t)=aN (t)*t.' rl d!, ," 
d d* (t),

limited by the maximum allowed angle of attack cx. in eq.(8). For the gradient of
the Hamiltonian an analytical form exists

(20) j^!^= uciH(hN 1v* 1-zvN L ! or u)+ L il.d o(' (t)
The initial approximation c(D for the first criterion is derived from the condi-

tion of ma:iimum lift-to-drag ratiop on the trajectory, and for the particular model is

(2ra) a" (t)=rtcoo(M) / ci .

For the other two criteria the initial approximation was computed according
to the formula

(zIb,c) ao(il=k,a*+k"( y+tn-t h )' "t ' - x'x)
and the limitatibn on the angle of altack (8). The parameters k,a"' and k, are
explicitly defined in [5]. Here in parentheses is the direct pursuit, ontrol paiam-
eter, and o(- is determined from the condition for a straight flight

(1 8c)
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(22)
ltciH(h)v'z

The choice of ft il (t) in
techniques and is a subject of
solution of the two boundarv

3. Results and discussion

Figure 1 shows the initial approximation, the optimal control function, and the
state variables on the optimal trajectory for the maximum range criterion. For v^:450
m/s, go:30", xo:0, and ,0:10000 m the increase in the flight iange is 42 percefit.
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Frg.l. Optimal control and trajectory for the maximum range critenon
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The relevant variables for the maximum kinetic energy criterion are pre-
sented infig.2. For vr:150 mls, yn:I}", xn=O, hn:1000 m and X:3000 m the energy
at the point of impact with the Earth sur:face:is incr'eased with 40 percent. For the
same initial condition and X-5500 m the use of traditional control methods does
not guarafltee arrival at the required point of impact, while the optimal control
does. If X=5900 m the required point of impadt eahnot be reached even with
implementation of the optimal control function. The solution in such cases coin-
cides with the optimal control for the maximum range criterion without, however;
satisfying the second terminal constraint in (10b). ' '
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Flg2. Optimal control and trajectory for the maximum kinetic enerry at the point of impact criterio.l
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hich would result a significant probability
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The implementation of the optimal control would increase not only the aiLr-

craft effectiveness, but also the opportunities for compensation for model pararn-
eter changes and other perturbations.

In conclusion, the optimal control problem of unpowered flight in vertical
plane was solved via Pontryagin's minimum principle for a class of terminal crite-
iia and constraints. The implementatio r of such control would increase the ajLr-

craft effectiveness, and in some cases, i.e., a flight of an aircraft after its engines
have failed, may guarantee safe landing and survival of crew and passengers.

References
1. S eywa ld, H. Trajectory OptimizationBased on

Dynamics, 17, 1994, Ne 3, 480-487.

2. Seywald, H., E.M. Cliff, K.H. Wel
the Vertical Plane. - Journal of

Differential Inclusion. - Journal ofGuidance, Control and

l. Range Optimal Trajectories for an Aircraft Flying in
Guidance, Control, and Dynamics, l7, 1994, lft 2,

389-398.

3.Wu, S.-F., S.-F. Guo, OptimalFlightTrajectoryGuidanceBasedonTotal EnergyControlofAircraft.

- Journal of Guidance, Control, and Dynamics, 17 
' 

1994, Jft 2,291-296.

4. Standard Atmosphere sA-81. State standard ofthe ussR 4401-81, 1981.

5. Tagarev, T. D. Optimizationof RunwayAmmunition Trajectories.-In:4th Aviation Conferenoe, Plovrliv,

Bulgaria, 30-31 October 1991.

6.Sage, A.P., C.C. White. OptimumSystemsControl.Moscow;RussianEdition, 1982.

7.Tagarcv, T. D. First Derivative Methods in Aircraft Optimal Contrbl Problems. - In: 3'd Annual Conference on

Modern Trends in Science, Stara Zagora, Bulgaria, 4-5 June 1992.

8. T a g a r e v , T. D . A Modified Gradient Method in Optimization Problems in Flight Dynamics. - In: 3'd Annual
Conference on Modern Trends in Science, SIaraZagora, Bulgaria,4-5 June 1992.

Recetved 7. VIIL l'.996

Ouruvaruo yrrpaBJleulle Ha 6e3ABI,IrareJIeH

rroJroT BrB BeprrrKaJIHa paBlrlrHa

Todop Taeapee

(Perrcnae)

Ha.iunrr Ha [r3[oJr3BaHe Ha elreprllflTa Ha nnaHl,Ipa.ilI
JIeTaTeJreH Arrapar Moxe Aa AorlpLlHece 3a rIoBItIIraBaHero Ha HeroBara
eoeKTr,rBHocr, a B HsKor{ cryqau np.f,K"o o[peAeJr.tr BeposrHocrra 3a ollen.f,BaHero
My, B Hacroflrrlara crarvs. sap,asara 3a orrr[MaJrHo yrrpaBJleHlre Ha rloJlera ce
perrraBa B cborBercrBr,re c rpr,r Kplrrepufl: MaKclIMarHa Aaneqvlla Ha [oJIeTa;
MaKCLrMaJrHa Kr{HeTr{qHa eHepru.fl B ToqKaTa Ha cbrIpI,IKocHoBeHI,Ie cbc 3eMHaTa
noBbpxHocT; onTr{ManH[ ycJroBvrs, 3a rrpoH]IKBaHe B 3eMHaTa TIOBbpXHOCT.
Saraqara 3a orrruMaJrHo yrrpaBneHue ce pe[raBa Ha ocHoBara Ha rrpuHuvra Ha
MaKCHMyMa Ha lIOHTpsrr,rH. orpaHr,rqeHrrsra Ha KpaftHoro c6crosHr,re ce orqlrrar
qpe3 BbBexAaHe Ha rraKa3areJrHa $yurqnr B Kpr,rreplr.f,. Bpeuero Ha rloJlera He e
Surclrpano. ,{syrovroBara KpaeBa 3a4aqa e peureHa irr4cneHo. Ourrauanno'ro
yflpaBneHrre Ha rrJraHr{paulnfl noJreT rapaHTr{pa eQer<runuo LI3noJI3BaHe IIa
KuHerr.rqHaTa r,r noTeHrIVarrHaT a eHepr[s Ha JIeTaTeJI Hvs. arrapar. PeanHgaqra.f, ra
My AO[bnHr,rTeJrHO rIO3BOJrqBa KOMrreHCr{paHe Ha [pOMeHI,I B [apaMeTpI,ITe Ha
MOIIena LI HeOTqeTeHI,I BbHIIIHI'I CMVIUeHLLS.




